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1. Introduction 

 
The application of CRISPR-Cas9 technology in 

agriculture has catalyzed a paradigm shift in crop 

improvement strategies, offering unparalleled 

precision and efficiency in genome editing. 

CRISPR (Clustered Regularly Interspaced Short 

Palindromic Repeats) and its associated protein 

Cas9 constitute a groundbreaking molecular 

toolkit that enables targeted modifications of DNA 

sequences within plant genomes (Jinek et al., 

2012). This revolutionary genome editing 

platform has not only expedited the pace of 

genetic manipulation in crops but also unlocked 

novel avenues for sustainable agriculture and 

global food security (Hsu et al., 2014). 

The versatility and simplicity of the CRISPR-Cas9 

system have propelled research efforts worldwide, 

driving significant advancements in crop 

biotechnology. By precisely targeting genes linked 

to agriculturally significant traits, such as yield, 

stress tolerance, and nutritional composition, 

researchers have achieved remarkable success in 

developing crops with enhanced productivity and 

resilience (Puchta and Fauser, 2014). For instance, 

CRISPR-mediated editing has been instrumental 

in conferring resistance to devastating pathogens 

like powdery mildew in wheat (Wang et al., 

2014), bacterial blight in rice (Li et al., 2012), and 

citrus canker in citrus plants (Jia and Wang, 

2014). 

Moreover, CRISPR technology holds promise for 
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promoting sustainable agricultural practices by 

mitigating the environmental impacts associated 

with conventional farming methods. Through 

targeted genome editing, researchers can engineer 

crops that require fewer chemical inputs, such as 

pesticides and fertilizers, thereby reducing 

environmental pollution and preserving soil health 

(Schindele et al., 2018). Additionally, CRISPR-

edited crops with improved nutritional profiles 

offer a viable solution to malnutrition and food 

insecurity, particularly in regions where staple 

crops lack essential vitamins and minerals 

(Wurtzel et al., 2019). 

Despite the transformative potential of CRISPR-

Cas9 in agriculture, several challenges persist, 

ranging from regulatory complexities to ethical 

considerations and public acceptance (Waltz, 

2016). The regulatory landscape governing the 

cultivation and commercialization of genetically 

modified organisms (GMOs) varies across 

jurisdictions, presenting obstacles to the global 

adoption of CRISPR-edited crops (Chawla et al., 

2017). Moreover, concerns regarding unintended 

off-target effects and the potential for gene flow to 

wild relatives underscore the need for rigorous 

risk assessment and environmental monitoring 

(Bortesi and Fischer, 2015). 

In this comprehensive review, we aim to provide 

an extensive exploration of the CRISPR-Cas 

revolution in agriculture, spanning its diverse 

applications, underlying mechanisms, regulatory 

frameworks, and ethical implications. By 

synthesizing recent research findings and 

emerging trends, we seek to elucidate the 

transformative potential of CRISPR technology in 

driving sustainable crop improvement and 

addressing the multifaceted challenges 

confronting modern agriculture. 

2. CRISPR-Cas: components and 

mechanism 

2.1 Components of CRISPR-Cas system 

At its core, the CRISPR-Cas system consists of 

two primary components: the Cas protein and the 

guide RNA (gRNA). The Cas protein, typically 

Cas9, serves as the molecular scissors responsible 

for cleaving DNA at specific target sequences. 

The gRNA, composed of a CRISPR RNA 

(crRNA) and a trans-activating CRISPR RNA 

(tracrRNA) fused together, guides the Cas protein 

to the target DNA sequence through 

complementary base pairing (Jinek et al., 2012). 

2.2 Mechanism of CRISPR-Cas action 

The mechanism of CRISPR-Cas-mediated 

genome editing involves several key steps. 

Initially, the gRNA forms a complex with the Cas 

protein, leading to the formation of the Cas-gRNA 

ribonucleoprotein (RNP) complex. This complex 

scans the genomic DNA for sequences 

complementary to the gRNA, facilitating target 

recognition (Doudna and Charpentier, 2014). 

Upon binding to the target DNA sequence, the 

Cas protein undergoes a conformational change, 

resulting in the activation of its endonuclease 

activity. The endonuclease domains of the Cas 

protein then catalyze the cleavage of the DNA, 

generating double-strand breaks (DSBs) at the 

target site (Gasiunas et al., 2012). 

Following DNA cleavage, the cell's DNA repair 

machinery comes into play to resolve the DSBs. 

Two primary pathways involved in DNA repair 

are non-homologous end joining (NHEJ) and 

homology-directed repair (HDR). NHEJ often 

leads to small insertions or deletions (indels) at the 
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site of the DSB, resulting in gene knockout or 

disruption. In contrast, HDR utilizes a template 

DNA molecule to precisely repair the DSB, 

enabling gene editing and insertion of desired 

sequences (Doudna and Charpentier, 2014). 

3. CRISPR-Cas9: evolution to precision 

genome editing 

The journey of the CRISPR-Cas system began 

with the elucidation of clustered regularly 

interspaced short palindromic repeats (CRISPR) 

in the genomes of bacteria and archaea. Initial 

studies in the late 1980s and 1990s identified these 

repetitive DNA sequences, which sparked 

curiosity about their function. However, it was not 

until the early 2000s that researchers began to 

unravel the significance of CRISPR in bacterial 

immunity against viral infections. 

The breakthrough came in 2012 when Doudna and 

Charpentier demonstrated the programmable 

nature of CRISPR-Cas9 for targeted genome 

editing in bacteria. Their landmark paper 

published in Science described how the Cas9 

protein, guided by a short RNA molecule, could 

precisely cleave specific DNA sequences. This 

pivotal discovery laid the foundation for a myriad 

of applications in genetic engineering, ranging 

from gene knockout and knock-in to gene 

regulation and functional genomics. 

The versatility of CRISPR-Cas9 lies in its ability 

to target virtually any genomic locus by simply 

modifying the sequence of the gRNA. This 

programmable nature, coupled with its high 

efficiency and specificity, has revolutionized 

genome editing and facilitated the study of gene 

function and regulation in various organisms. 

4. Importance of CRISPR-Cas in 

Agriculture 

 

The escalating impacts of climate change have 

intensified the specter of food scarcity, 

necessitating innovative approaches to bolster 

agricultural productivity. Climatic shifts, 

characterized by erratic weather patterns, extreme 

temperatures, and unpredictable precipitation, 

have destabilized traditional farming practices, 

leading to reduced crop yields and compromised 

food security. In response to these challenges, 

targeted genome editing, facilitated by advanced 

molecular tools such as CRISPR-Cas systems, has 

emerged as a promising approach to boost 

agricultural productivity. In rice and wheat, 

targeted genome editing has been instrumental in 

increasing grain size, weight, and number, as well 

as enhancing protein content, tiller spread, and 

tiller number. These improvements have been 

reported in various studies (Wang et al., 2020; 

Oliva et al., 2019; Zhang et al., 2019). 

 

  
 

Fig. 1: Evolution of the CRISPR-Cas System: Key Milestones 
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Moreover, targeted genome editing has led to 

significant enhancements in the quality of crops 

such as rice and corn. Modified crops utilizing the 

CRISPR–Cas system have been tailored to reduce 

the levels of toxic steroidal glycoalkaloids, 

thereby enhancing the color and extending the 

shelf-life of fruits and vegetables, rendering them 

more commercially appealing. Additionally, these 

modifications have resulted in an increase in 

desirable traits such as amylose and starch 

content, as well as good fats like oleic acid levels. 

Furthermore, improvements in fragrance, gluten 

protein reduction, and decreased unsaturated fatty 

acids content have been achieved (Li et al., 2012; 

Cermak et al., 2015; Clasen et al., 2016; Jia et al., 

2017). These advancements highlight the 

transformative potential of CRISPR-based 

targeted genome editing in agriculture, offering 

precise and tailored solutions to address the 

complex challenges posed by climate change and 

food insecurity. 

 

4.1 Enhancing crop yield and quality 

CRISPR-Cas9 genome editing, targeting the 

OsNAS2 promoter, specifically deleting the cis-

regulatory element ARR1AT at position -933, 

significantly increased Zn concentration per plant 

in rice and also led to an augmented spikelet 

number per main panicle, resulting in increased 

grain yield per plant (Ludwig et al., 2024). In an 

another study conducted by Usman et al. (2020) 

reported that precise editing of the OsPYL9 gene 

by RNA-guided Cas9 nuclease increased the grain 

yield in rice by regulating circadian rhythm. 

CRISPR/Cas9-mediated multiplex genome editing 

targeted three key genes - GW2, GW5, and 

TGW6, known as negative regulators of grain 

weight and the outcomes demonstrated a notable 

increase in grain size and thousand grain weight 

(Xu et al., 2016). 

Bioactive compounds, characterized as additional 

nutritional constituents found in small quantities 

in foods, often contribute to the prevention of 

cardiovascular disease and cancer. Anthocyanin, 

malate, γ-aminobutyric acid (GABA), and 

lycopene are among these bioactive compounds. 

Utilizing CRISPR-Cas9 technology, researchers 

have enhanced the levels of anthocyanin, GABA, 

and lycopene in tomato fruits by modulating the 

expression of key genes in their metabolic 

pathways (Cermak et al., 2015; Nonaka et al., 

2017). 

The function of TM6 in strawberry was elucidated 

using the CRISPR-Cas9 system applied to an 

octoploid species. Phenotypic analysis of tm6 

mutants unveiled pronounced defects in anthers, 

underscoring TM6's crucial role in flower 

development (Martín-Pizarro et al., 2019). 

Furthermore, CRISPR-Cas9 was employed to 

explore the biological role of YUCCA 10 

(YUC10) in auxin synthesis during strawberry 

fruit development. Knocking out YUC10 resulted 

in a significant reduction in free auxin in yuc10 

mutants (Feng et al., 2019). 

4.2 Disease resistance 

 

CRISPR–Cas13a presents an efficient tool for 

targeting RNA viruses, predominantly plant 

viruses. Aman et al. 2018 utilized LshCas13a to 

target Turnip mosaic virus (TuMV) which cause 

Turnip mosaic disease in Nicotiana benthamiana, 

achieving significant reductions in viral gene 

expression. The predominant approach for 

pathogen control via the CRISPR/Cas9 system 

involves disrupting the host's susceptibility gene 

(S gene), thus impeding plant-pathogen 
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interactions and preventing pathogen 

establishment (Zaidi et al., 2018). This disruption 

can be achieved by targeting either the promoter 

sequence of the S gene or interrupting the 

effector-binding site. Ali and his coworkers 

effectively demonstrated virus targeting by 

inducing indels in the genome of tomato yellow 

leaf curl virus, thus imparting viral resistance. 

This resistance was achieved through 

CRISPR/Cas9 binding to the viral genome, 

subsequently obstructing the viral genome’s 

access to replication units, or by generating blunt-

end cuts or indel mutations on the viral genome. 

Thomazella et al. (2016) utilized the CRISPR-

Cas9 system to deactivate the DMR6 ortholog in 

tomatoes. The resulting dmr6 mutants exhibited 

disease resistance against a range of pathogens, 

such as Pseudomonas syringae, Phytophthora 

capsica, and Xanthomonas spp., with minimal 

adverse effects. Pseudomonas syringae induces 

bacterial speck disease in tomato plants, which 

significantly impacts their productivity and market 

value. Given the role of Jasmonatezim domain 

protein 2 (JAZ2) in defense against P. syringae in 

A. thaliana, scientists employed CRISPR-Cas9 to 

produce dominant JAZ2 repressors in tomatoes 

with the C-terminal jasmonate associated (Jas) 

domain removed (JAZ2Δjas). These JAZ2Δjas 

repressors confer resistance to P. syringae. 

Nekrasov et al. (2017) employed CRISPR-Cas9 

technology to create a tomato loss-of-function 

mlo1 mutant. This mutant exhibited complete 

resistance to the powdery mildew fungus Oidium 

neolycopersici. 

 

4.3 Herbicide resistance 

 

The application of the CRISPR-based gene editing 

technique has led to the successful development of 

crop varieties resistant to herbicides that target the 

ALS enzyme. This technique has been 

implemented across various crops, such as rice 

(Zhang et al., 2021), maize (Li et al., 2020), wheat 

(Zhang et al., 2019), watermelon (Tian et al., 

2018), oilseed rape (Wu et al., 2020), tobacco 

(Kang et al., 2019), tomato and potato (Veillet et 

al., 2019). Additionally, wheat has shown 

tolerance to herbicides inhibiting ACCase through 

cytidine-deaminase-mediated base editor (CBE). 

To enhance the efficiency of CRISPR/Cas 

technology, the target-activation induced cytidine 

deaminase (Target-AID) system has been 

introduced, facilitating the simultaneous 

improvement of multiple traits in crops.  

In the development of herbicide-resistant crop 

varieties, only resistance to ALS-inhibiting 

herbicides, ACCase-inhibiting herbicides, and 

glyphosate has seen significant success. However, 

research on the widespread adoption and effective 

management of weeds with herbicides that target 

4-hydroxyphenyl pyruvate dioxygenase and 

protoporhyrinogen oxidase is lacking. 

 

4.4 Plant stress resistance 

 

Stress poses a formidable challenge to agricultural 

productivity, with abiotic and biotic stressors 

exerting detrimental effects on crop yield. Abiotic 

stressors, encompassing factors such as drought, 

floods, temperature extremes, salinity, heavy 

metals, and radiation, disrupt plant growth and 

development. Conversely, biotic stress arises from 

attacks by various pathogens including viruses, 

bacteria, fungi, and herbivores, further 

compromising crop health and productivity. To 

mitigate these challenges, crops such as rice, 

tomato, cucumber, and grapefruits have been 

genetically modified through induced mutations to 

enhance resistance to both abiotic (Klap et al., 
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2017) and biotic stresses (Lu et al., 2018). While 

earlier attempts at site-specific genomic mutation 

relied on DNA-binding endonucleases such as 

zinc finger nucleases (ZFN) and transcription 

activator-like effector nucleases (TALEN), these 

approaches have inherent limitations (Christian et 

al., 2010). The advent of the CRISPR–Cas system 

marked a significant breakthrough, enabling 

precise genome editing in a wide range of crops  

including rice, wheat, Nicotiana benthamiana, and 

Arabidopsis (Chen et al., 2019). In their study, Li 

et al. (2018) discovered that C-repeat binding 

factor 1 (CBF1) plays a crucial role in 

safeguarding plants against cold injury. The cbf1 

mutant, created using CRISPR-Cas9, displayed 

exacerbated chilling-injury symptoms with 

Table 1: CRISPR-Based crop improvement studies in important agriculture and horticulture crops. 
 

Crops Targeted gene Result References 

Agricultural crops 

Rice 

OsSEC3A, 

OsSWEET13, 

OsERF922 

Resistant to blast and bacterial blight Ma et al., 2018 

Rice ALS Herbicide resistance Chen et al., 2019 

Rice UVb1-1 Resistant to false smut Mishra et al., 2018 

Rice OsGS3 Increase in grain size Miao et al., 2013 

Wheat EDR1 Resistant to powdery mildew Zhang et al., 2017 

Barley 
ENGase, HvPM19, 
BolC.GA4.a 

Increase in number of grains Kapusi et al., 2017 

Maize ARGOS8 Drought resistance Svitashev et al., 2016 

Horticultural crops 

Tomato SlMLO1 Resistant to powdery mildew Nekrasov et al., 2017 

Potato ALS Herbicide resistance Choudhury et al., 2016 

Cucumber eIF4E Broad virus resistant Sauer et al., 2016 

Apple 
DIPM1, DIPM2, 

DIPM4 
Resistant to fire blight disease Malnoy et al., 2016 

Kiwifruit CEN4, CEN Rapid flower and fruit development Varkonyi et al., 2018 

Grape VvMLO3 Resistant to powdery mildew Wan et al., 2020 

Citrus CsLOB1 Resistant to citrus canker Jia et al., 2017 

Cocoa TcNPR3 Resistant to Phytophthora tropicalis Fister et al., 2018 

Watermelon ALS Herbicide resistance Tian et al., 2018 

Papaya alEPIC8 Resistance to Phytophthora palmivora Gumtow et al., 2018 

Cassava EPSPS Herbicide resistance Hummel et al., 2018 

Soybean GmSPL9a, b, c Increase in yield Bao et al., 2019 

Mushroom PPO Browning resistant Waltz, 2016 
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increased electrolyte leakage compared to wild-

type (WT) plants. Additionally, MAPK3, known 

for its involvement in resisting gray mold disease 

(Zhang et al., 2018), also contributes to tomato 

drought response by shielding cell membranes 

from oxidative damage. 

 

Customized sgRNA-Cas9 systems have emerged 

as a widely employed tool for genome 

modification in crops like rice and wheat, 

showcasing the ease and efficiency of genome 

editing (Shan et al., 2013). Notably, Cas12a, 

formerly known as Cpf1, presents advantages over 

Cas9 in plant genome editing due to its 

requirement of shorter guiding nucleotides, ability 

to create larger deletions at target sites, and 

facilitation of NHEJ-mediated donor DNA 

insertion (Kim et al., 2017). 

 

In Arabidopsis, Feng and coworkers successfully 

demonstrated the mutation and heritability of five 

endogenous target genes – brassinosteroid 

insensitive 1 (bri1), jasmonate-zim-domain 

protein 1 (jaz1), gibberellic acid insensitive (gai), 

magnesium chelatase subunit i (chli), and 

transparent testa 4 (tt4), in addition to the 

apetala1 (ap 1) gene, using CRISPR–Cas tools 

(Feng et al., 2014). Furthermore, CRISPR–Cas 

technology can be harnessed for the regulation of 

genes responsible for epigenetic modification, 

methylation, and/or demethylation, enabling 

simultaneous induction and repression of gene 

expression (Puchta, 2016). 

 

Hybrid breeding, alongside precision plant 

breeding facilitated by CRISPR–Cas, holds 

promise for increasing crop productivity (Chen et 

al., 2019). CRISPR–Cas has been instrumental in 

producing thermosensitive male-sterile lines in 

rice (Zhou et al., 2016) and maize (Svitashev et 

al., 2016), facilitating the production of high-

quality hybrid varieties. Additionally, knockout 

mediated by CRISPR–Cas has enabled the 

development of herbicide-resistant crops in rice 

(Shimatani et al., 2017), Arabidopsis (Chen et al., 

2017), and watermelon (Tian et al., 2018), further 

expanding the scope of genome editing 

applications in plants. 

5. CRISPR crop regulations and ethics 

The regulatory framework surrounding CRISPR-

modified crops varies significantly among 

countries and regions. In some jurisdictions, 

CRISPR-edited crops that do not involve the 

insertion of foreign DNA are subject to less 

stringent regulations compared to traditional 

genetically modified organisms (GMOs). For 

example, the European Union (EU) has classified 

some CRISPR-edited crops as non-GMOs, 

thereby exempting them from rigorous regulatory 

requirements (Eckerstorfer et al., 2019). 

In contrast, other countries, such as the United 

States, have adopted a case-by-case approach to 

regulate CRISPR-modified crops, evaluating them 

based on their characteristics and potential risks to 

human health and the environment. The U.S. 

Department of Agriculture (USDA), the 

Environmental Protection Agency (EPA), and the 

Food and Drug Administration (FDA) play key 

roles in assessing the safety and environmental 

impact of CRISPR-modified crops (Waltz, 2018). 

 

5.1 Ethical Implications 

CRISPR-mediated genome editing in agriculture 

raises various ethical considerations that must be 

carefully addressed. One of the primary concerns 

revolves around unintended consequences and 

potential ecological impacts of genetically 
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modified crops. Altering genes in crops could 

inadvertently affect ecosystems, biodiversity, and 

non-target organisms, leading to unforeseen 

environmental consequences (Lassoued et al., 

2019). 

Additionally, ethical considerations extend to 

issues of social justice and equity in access to 

CRISPR technology and its benefits. There is a 

risk that CRISPR-based agricultural innovations 

could exacerbate existing inequalities, favoring 

large agro-industrial companies and marginalizing 

small-scale farmers and resource-constrained 

regions. Ensuring equitable access to CRISPR 

technology and its benefits is essential for 

promoting social justice and addressing global 

food security challenges (Levidow and Carr, 

2020). 

Furthermore, questions surrounding informed 

consent, transparency, and public engagement in 

decision-making processes related to CRISPR-

modified crops are paramount. Stakeholder 

involvement, including farmers, consumers, 

policymakers, and civil society organizations, is 

crucial for fostering transparency, accountability, 

and democratic governance in agricultural 

biotechnology. 

 

6. Conclusion 

 

The advent of CRISPR-Cas technology heralds a 

new era in agriculture, offering unparalleled 

precision, efficiency, and adaptability in crop 

enhancement. With its transformative potential, 

CRISPR-Cas has emerged as a powerful tool for 

addressing the multifaceted challenges 

confronting contemporary agriculture. By 

leveraging the capabilities of CRISPR-Cas, 

researchers are poised to revolutionize crop 

breeding practices, enabling the development of 

resilient, high-yielding, and nutritionally enriched 

cultivars. 

 

CRISPR-Cas-mediated genome editing facilitates 

the targeted modification of specific genes, 

thereby accelerating the breeding process and 

circumventing the limitations of traditional 

breeding methods (Zhang et al., 2019). This 

precision breeding approach holds tremendous 

promise for enhancing crop traits such as disease 

resistance, abiotic stress tolerance, and nutritional 

quality, thereby bolstering agricultural 

productivity and resilience in the face of climate 

change and environmental pressures (Wang et al., 

2020). Furthermore, the versatility of CRISPR-

Cas extends beyond genetic modification to 

encompass epigenome editing and gene 

regulation, offering novel avenues for crop 

improvement (Shimatani et al., 2017). By 

precisely modulating gene expression patterns and 

regulatory networks, CRISPR-Cas9 enables fine-

tuning of agronomically important traits, such as 

flowering time, yield components, and nutrient 

utilization efficiency. 

 

Moreover, CRISPR-Cas technology holds 

immense potential for promoting sustainable 

agriculture and addressing global food security 

challenges (Nalley et al., 2019). By enhancing 

crop productivity, reducing input requirements, 

and minimizing environmental impacts, CRISPR-

edited crops offer a pathway towards achieving 

food security goals while mitigating the ecological 

footprint of agricultural production systems. 

 

In conclusion, CRISPR-Cas technology represents 

a paradigm shift in agriculture, offering 

unprecedented opportunities for crop 

improvement and sustainable development. By 



86                                                      RAMA, CRISPR-Cas revolution in Agriculture                                                   

 

CURR. INNOV. AGRI. SCI., 1(1), APRIL 2024 

 

harnessing the power of CRISPR-Cas, researchers 

can accelerate the pace of genetic improvement in 

crops, cultivate resilience to environmental 

stresses, and contribute to the realization of a 

food-secure future for generations to come. 
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