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1. Introduction 

 
Grain size is one of wheat's most significant 

agronomic traits (Triticum aestivum L.), playing a 

critical role in determining grain yield and market 

value. As wheat remains a global staple crop, 

feeding nearly 40% of the population, improving 

its productivity and quality is essential for meeting 

the rising demands of an expanding global 

population. Grain size traits, including grain 

length (GL), grain width (GW), grain area size 

(GAS), grain perimeter length (GPL), grain 

length-width ratio (GLWR), grain circularity 

(CS), and crease depth (CD), are pivotal 

components of grain morphology, influencing 

both yield potential and end-use quality. Breeding 

programs aiming to enhance wheat productivity 

often prioritize these traits due to their direct 

impact on economic value and functional 

characteristics. However, grain size traits are 
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inherently complex, being influenced by multiple 

genes and their interactions with environmental 

factors. This complexity necessitates precise 

phenotyping and genetic characterization to fully 

understand their genetic basis and advance wheat 

improvement efforts. 

QTL mapping has proven to be a powerful 

approach for identifying genomic regions 

associated with phenotypic variation in complex 

traits like grain size. By pinpointing these regions, 

researchers can identify candidate genes 

responsible for desirable characteristics, thus 

facilitating the development of superior wheat 

varieties. However, the accuracy of QTL mapping 

is heavily dependent on the quality and precision 

of phenotypic data. Poorly measured traits or 

limited data can lead to inconsistencies in QTL 

identification, diminishing the utility of marker-

assisted selection (MAS) and genomic selection 

(GS). The complexity of grain size traits, coupled 

with their sensitivity to environmental conditions, 

underscores the need for advanced phenotyping 

technologies to achieve reliable genetic analysis 

and trait improvement. 

Despite the importance of phenotyping, traditional 

methods for measuring grain size traits are fraught 

with limitations. These methods are often labor-

intensive, time-consuming, and prone to human 

error, particularly when handling large 

populations or field-scale experiments. In addition 

to being ineffective, manual measurement of 

metrics like GL, GW, or CD is subjective, which 

produces inconsistent findings.  

Furthermore, traditional phenotyping approaches 

are often constrained by their inability to 

simultaneously measure multiple traits at high 

precision, which limits their utility in multi-trait 

analyses. For example, while traits like grain 

length and area are commonly measured, critical 

parameters such as crease depth, which influences 

nutrient transport, grain filling, and milling 

efficiency, remain underexplored due to the lack 

of reliable tools for their quantification. 

Recent advancements in high-throughput 

phenotyping technologies have begun to address 

these challenges. Automated systems like Smart 

Grain have emerged as powerful tools for 

analyzing grain size traits with high precision and 

scalability. These tools leverage image analysis 

algorithms to measure a range of parameters, 

including GL, GW, GAS, and GPL, in a fraction 

of the time required by manual methods. Smart 

Grain, for instance, allows researchers to 

phenotype large populations rapidly and 

consistently, facilitating multi-environment trials 

where high-resolution phenotypic data are crucial. 

By enabling more precise measurements, these 

technologies enhance the accuracy of QTL 

mapping and gene discovery, allowing researchers 

better to understand the genetic architecture of 

grain size traits. 

 The area has seen additional transformation with 

the integration of machine learning (ML) and 

artificial intelligence (AI) techniques into 

phenotyping operations. AI-driven tools, 

particularly those utilizing deep learning 

algorithms, can analyze complex datasets and 

automate the measurement of grain traits with 

unparalleled accuracy. Convolutional neural 

networks (CNNs), a subset of deep learning, have 

been applied to extract detailed phenotypic 

information from high-dimensional images, 

enabling the simultaneous analysis of traits such 

as GL, GW, GAS, and CD. These advancements 

not only improve the precision of phenotyping but 

also make it possible to analyze genotype-

environment interactions, which are critical for 
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understanding trait variability across different 

conditions. 

A key focus in contemporary phenotyping is the 

integration of multiple grain size traits into a 

single framework. Multi-trait analyses are 

essential for maximizing QTL discovery, as they 

allow researchers to account for correlations 

between traits and identify genetic determinants 

that might be overlooked in single-trait studies. 

For example, traits like GL and GW often exhibit 

genetic correlations and analyzing them together 

can provide deeper insights into their underlying 

genetic basis. Similarly, incorporating parameters 

such as CD into phenotypic datasets can lead to 

the identification of new QTLs, thus broadening 

the scope of genetic improvement. Multi-trait 

approaches also enhance the robustness of 

breeding strategies, enabling the simultaneous 

selection of multiple desirable traits. 

2. Grain size traits in wheat 

Grain size associated traits comprise multiple 

parameters that collectively determine wheat yield 

and grain quality. Each of the following trait-

parameter provides unique information about the 

physical characteristics of grain. Key traits 

include, 

2.1 Grain length (GL): Grain length is one of the 

most important morphological traits influencing 

grain weight and end-use quality. Multiple studies 

have identified major QTLs associated with GL, 

such as TaGL3 and TaGS5, which play a role in 

cell elongation and division during grain 

development (Wang et al., 2015; Fan et al., 2019). 

Image-based phenotyping platforms, such as 

Smart Grain, have significantly improved GL 

measurement by providing high-resolution and 

automated analyses (Tanabata et al., 2012). 

2.2 Grain width (GW):Grain width is another 

key component influencing kernel plumpness and 

milling quality. Studies indicate that GW is 

regulated by both pleiotropic and trait-specific 

QTLs, including TaCWI (cell wall invertase) 

genes that influence grain filling (Jiang et al., 

2011). High-throughput imaging systems have 

enabled more precise GW measurements, 

improving the accuracy of genetic mapping (Du et 

al., 2016). 

2.3 Grain area size (GAS): Grain area size is a 

composite trait derived from length and width 

measurements, providing an integrated parameter 

for grain morphology. GAS has been linked to 

major QTLs, such as qGAS.2D, and is strongly 

associated with grain yield (Zhang et al., 2016). 

Advanced phenotyping tools, such as Plant 

Screen, allow for large-scale GAS quantification 

in diverse populations (Fiorani and Schurr, 2013). 

2.4 Grain perimeter length (GPL): Grain 

perimeter length serves as a descriptor of grain 

shape and can indirectly indicate kernel surface 

area and volume. Studies have highlighted its 

correlation with yield-related traits and its utility 

in discriminating between wheat varieties (Feng et 

al., 2018). Software like Smart Grain has been 

instrumental in generating accurate GPL 

measurements in breeding programs (Tanabata et 

al., 2012). 

2.5 Grain length-width ratio (GLWR): The 

grain length-width ratio is a critical shape 

descriptor influencing market preference and 

milling efficiency. GLWR is under strong genetic 

control, with loci such as TaGLWR3-1 playing a 

prominent role in its regulation (Wu et al., 2019). 

High-throughput phenotyping systems allow for 
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efficient GLWR measurement across diverse 

genotypes. 

2.6 Grain circularity (CS): Grain circularity 

reflects kernel roundness, an essential trait for 

processing quality. Circular grains often have 

better milling efficiency and flour extraction rates. 

CS is now routinely measured using AI-powered 

tools, which analyze this trait alongside other size 

parameters (Ubbens and Stavness, 2017). 

2.7 Distance between IS and CG (DS): The 

distance between the intersection of length and 

width (IS) and center of gravity (CG) provides 

novel insights into kernel symmetry and shape. 

This trait has emerged as an important indicator of 

grain uniformity, and its phenotyping is 

increasingly integrated into multi-trait analyses. 

Crease depth (CD): Crease depth significantly 

affects grain hardness, milling yield, and 

susceptibility to fungal infections (Mabille and 

Abecassis, 2003; Sun et al., 2007; Kamaral et al., 

2022). Despite its importance, CD phenotyping 

has been challenging due to limitations in 

traditional methods. Advances in 3D imaging and 

deep learning have enabled more precise 

measurements, paving the way for its inclusion in 

QTL interval mapping and genome wide-

association studies (Ruan et al., 2020; Song et al., 

2023). 

3. Challenges in traditional phenotyping 

methods 

Traditional phenotyping methods are labor-

intensive, time-consuming, and often subject to 

operator bias. For example, manual measurement 

of traits like CD and CS is prone to 

inconsistencies, particularly in large-scale studies 

(Cobb et al., 2013). This underscores the need for 

advanced, high-throughput phenotyping tools. (Xu 

et al., 2017). 

4. Advanced phenotyping approaches 

for grain size 

High-Throughput Phenotyping (HTP): HTP 

systems leverage imaging technologies such as 

RGB cameras, near-infrared spectroscopy (NIR), 

and laser scanning to measure grain traits 

efficiently (Fiorani and Schurr, 2013). Platforms 

like LemnaTec and PlantScreen enable the rapid 

phenotyping of thousands of grains, significantly 

enhancing data collection. 

Smart Grain imaging tool: Smart Grain software 

offers a high-throughput solution for phenotyping, 

with capabilities for capturing multiple traits 

simultaneously, which is essential for complex 

traits like grain size. By using high-resolution 

imaging and algorithmic processing, Smart Grain 

provides a comprehensive view of grain 

morphology that surpasses traditional methods 

(Tanabata et al., 2012). The software is 

particularly useful for traits such as GL, GW, and 

GAS, where accuracy and consistency are critical 

for QTL discovery. 

However, Smart Grain also has limitations. Its 

effectiveness is reduced under conditions where 

grain morphology deviates from standard shapes, 

as the software may not accurately detect irregular 

grain boundaries. Additionally, Smart Grain’s 

ability to incorporate environmental data is 

limited, which is crucial for traits affected by 

genotype-environment interactions. Phenotyping 

of grain crease (i.e., crease depth) is another 

challenge among wheat grain parameters, since 

the tissues or cells increase regions play 
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influential role in nutrient transportation. Smart 

Grain itself is not capable to determine crease 

depth (CD) in wheat grains. These gaps indicate a 

need for enhanced software algorithms that can 

adapt to varying grain shapes and environmental 

conditions, improving the precision of phenotypic 

data used for QTL and gene discovery (Feng et 

al., 2018). 

5. Recent advances in QTL 

identification of grain size parameters 

Recent studies have made considerable progress in 

identifying QTLs associated with grain size 

parameters in wheat. Our knowledge of the 

genetic basis of variables including grain length, 

width, area, and crease depth has improved as a 

result of these efforts, which have identified many 

QTLs that control these characteristics (Wu et al., 

2021).  

For instance, the identification of QTLs on 

chromosomes 1B, 2A, and 6A has provided 

insights into the loci associated with grain length 

and width under varying environmental 

conditions. However, translating QTL discoveries 

into functional candidate genes remains 

challenging due to the lack of precise phenotypic 

data and the complex nature of grain size traits. 

The complexity of wheat’s hexaploid genome 

further complicates QTL mapping, as multiple 

homoeologous regions can contribute to a single 

trait. Recent advances in sequencing technologies 

and bioinformatics have helped overcome some of 

these challenges, enabling more detailed mapping 

and identification of candidate genes. 

Nevertheless, without precise, high-dimensional 

phenotyping data, accurately associating QTLs 

with specific genes remains difficult. Enhanced 

phenotyping approaches that capture a broad 

range of grain size-related traits are essential for 

bridging this gap and facilitating candidate gene 

discovery. Comprehensive trait measurement is 

essential for maximizing QTL discovery. Multi-

trait analyses enable the identification of 

pleiotropic QTLs that influence multiple grain size 

traits, thereby accelerating breeding efforts (Zhang 

et al., 2016). Studies integrating GL, GW, GAS, 

and CD into QTL mapping have demonstrated the 

utility of this approach in improving genetic gain 

(Fan et al., 2019). 

6. Artificial intelligence (AI) and deep 

learning (DL) in grain size 

measurement 

AI-driven phenotyping platforms use machine 

learning algorithms to analyze complex trait data 

with high precision (Ubbens and Stavness, 2017). 

For instance, convolutional neural networks 

(CNNs) are used to extract features like CD and 

CS from high-resolution images, providing 

scalable solutions for large datasets. These 

advancements have greatly enhanced the accuracy 

of phenotypic data and its utility in QTL mapping. 

7. Conclusion 

High-throughput phenotyping innovations have 

redefined the potential for analyzing complex 

traits associated with grain size in wheat, 

significantly advancing QTL discovery. 

Technologies like Smart Grain and AI-driven 

phenotyping models offer unprecedented accuracy 

and scalability, enabling breeders to characterize 

multi-dimensional traits like grain length, width, 

area, and crease depth with precision. While 

challenges remain, particularly in adapting these 

models to diverse environments and genotypes, 
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continued advancements in AI and deep learning 

are likely to overcome these barriers. Enhanced 

phenotyping not only enables the identification of 

key QTLs but also supports the development of 

wheat varieties with improved yield, quality, and 

resilience, contributing to global food security. 
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