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1. Introduction 

 
Maize, often known as corn, is a key grain crop in 

the Poaceae family that has enormous worldwide 

agricultural relevance (Shikha et al., 2021). Its 

origin may be traced back to the Tehuacan Valley 

in Mexico, where it was first domesticated. Maize 

has a genome size ranging from 2.4 to 2.7 

gigabase pairs (Gbp) and is notable for being one 

of the first plant genomes of gigabase size to be 

sequenced using novel approaches such as omics 

technology (Rabinowicz and Bennetzen, 2006). 

This crop is critical for producing food, animal 

feed, and low-cholesterol edible oil for human and 

cattle use. Its domestication required considerable 

morphological changes, allowing the plant to 

adapt from its tropical origins to survive in a 

variety of environmental situations (Gálvez, 

2020). 

Maize agriculture in India covers around 10 

million hectares, yielding 34.3 million metric 

tonnes and contributing just 2% to world 

production in the 2022-2023 timeframe (US-

NAAS, 2023). Accurately estimating and 

projecting grain output is critical for guaranteeing 
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food security and developing effective food policy 

(Ren et al., 2023). Understanding the relationship 

between yield and its constituent parts is essential 

for increasing agricultural productivity through 

strategic breeding (Datta et al., 2023). To 

precisely gauge the level of genetic diversity 

within a population, genotypic coefficients of 

variation (GCV), phenotypic coefficients of 

variation (PCV), broad-sense heritability (h2b), 

and genetic advance (GA) must be meticulously 

measured. Efficient selection methods rely on a 

parent population with a high degree of diversity. 

Metrics such as PCV and GCV give information 

on the amount of variation in a population, 

whereas heritability represents the proportion of a 

trait that is passed down to future generations 

(Adhikari et al., 2018). Understanding heritability 

helps guide selection approaches, forecast 

improvements, and evaluate the significance of 

genetic influences (Hadi and Hassan, 2021). The 

level of development observed in a certain 

characteristic under specific selection forces is 

measured by genetic advance. Higher genetic 

progress combined with enhanced heritability 

gives ideal circumstances for selection operations.  

Grain yield in maize is a complex quantitative 

trait; hence direct selection for this trait is not 

fruitful. The correlation analysis points to the 

interrelationships between the yield and other 

traits taken under study. The information on these 

interrelationships can be utilized to structure a 

selection strategy to improve the yield through the 

selection of yield associated traits (Pavlov et al., 

2015). The Principal Component Analysis (PCA) 

is a dimensionality reduction technique which is 

useful for inferring or identifying the patterns 

amongst the germplasm and the traits responsible 

for the variation (Guei et al., 2005). It can be used 

for genetic improvement of important traits 

contributing to the variability (Das et al., 2017). 

An Ideotype can be defined as a plant type that 

has a combination of all the ideal traits (Rocha et 

al., 2018). The complexity of the selection of a 

superior genotype with all the favourable traits can 

be attributed to the quantitative nature of 

inheritance of those traits. Several selection 

indices have been proposed for selecting superior 

genotypes based on the defined selection criteria 

(Céron-Rojas and Crossa, 2018). The limitation of 

these indices is the effective conversion of the 

economic value of these traits into weightage for 

selection of genotypes. This roadblock was 

overcome by (Olivoto and Nardino, 2020) through 

the development of a multi trait selection index 

called the Multi Trait Genotype Ideotype Distance 

Index (MGIDI) which is based on factorial 

analysis. This index assigns weightage to the 

individual traits according to the breeding goal 

and aids in selection of superior genotypes. The 

MGIDI index has been used by multiple 

researchers for selection of superior genotypes in 

barley (Pour-Aboughadareh et al., 2021), oats 

(Klein et al., 2023), sesame (Ahsan et al., 2024) 

and maize (Singamsetti et al., 2023). 

The current study aims to estimate the genetic 

variability present in the maize germplasm, mine 

the trait associations through correlation analysis 

and selection of superior genotypes by defining 

ideotypes with differential maturity i.e.  Late and 

medium maturity with high yield and employ the 

MGIDI index to select superior genotypes which 

are close to the defined ideotype. 

 2. Material and Methods 

2.1 Experimental material and layout 
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A total of 55 germplasm lines were obtained from 

the maize unit, Department of Millets, Tamil 

Nadu Agricultural University, Coimbatore to carry 

out the research study. The experiment was 

performed in a Randomised Block Design with 

three replications during Rabi 2022-23 in the 

experimental farm of the Department of Millets. 

Throughout the crop season, standard agronomic 

procedures and plant protection practices were 

implemented. To carry out the current 

investigation, the biometrical observation on Days 

to 50% tasseling, Days to 50% silking, Plant 

height (cm), Cob length (cm), Cob diameter (cm), 

Number of kernel rows, Number of kernels/row, 

Shelling percentage (%), and Grain yield (g) were 

recorded in selected five plants per genotype. 

 

2.2 Statistical Analysis 

For each of the traits studied, an analysis of 

variance was performed. Burton and De Vane's 

(Burton and Devane, 1953) formula was used to 
calculate the coefficient of variation for these 

qualities.    This variance was then categorised as 

high (more than 20%), moderate (10% - 20%), or 

low (less than 10%). The broad sense heritability 
and the projected genetic advance (GA) was 

calculated using (Johnson et al., 1955) method 

and categorized as low, moderate, or high. 
Correlation analysis was carried out according to 

the methods described by (Miller et al., 1958). 

Principal Component Analysis, a dimension 
reduction approach developed by (Massey, 1965; 

Jolliffe, 1986) was used to compress variables 

while keeping important information. PCA was 

critical in decreasing data dimensionality and 
gaining insights from the dataset. The Multi-trait 

Ideotype Genotype Distance Index (MGIDI) 

distance index, established by (Olivoto and 
Nardino, 2020), was used to find genotypes that 

were closely related to the suggested ideotype. 

This ideotype is especially designed for early and 

late maturity periods, with the goal of producing a 

high yield. As a result, three ideotype reference 

models representing early, middle, and late 

maturity were developed. These reference models 

were used to identify genotypes that closely 
matched the target ideotype's attributes. To begin, 

each characteristic (rXij) was rescaled using the 

following equation (Eqn. 1) 

𝑟𝑋𝑖𝑗 =  
𝜂𝑛𝑗− 𝜑𝑛𝑗

𝜂𝑜𝑗− 𝜑𝑜𝑗
 × (𝜃𝑖𝑗  −  𝜂𝑜𝑗) + 𝜂𝑛𝑗      (Eqn. 1) 

where  𝜑𝑜𝑗  and 𝜂𝑜𝑗  are the original minimum and 

maximum values for the trait j, respectively; 

𝜑𝑛𝑗  and 𝜂𝑛𝑗  are the new minimum and maximum 

values for trait j after rescaling, respectively; 

and 𝜃𝑖𝑗  is the original value for jth trait of the ith 

genotype. The values for  𝜑𝑖𝑗  and 𝜂𝑖𝑗  are chosen 

as follows: for the traits in which positive gains 

are desired, 𝜑𝑛𝑗   = 0 and 𝜂𝑛𝑗   = 100 should be 

used, while for the traits in which negative gains 

are desired, 𝜑𝑛𝑗   = 100 and 𝜂𝑖𝑗  = 0 should be used 

(Olivoto and Nardino, 2020). Subsequently, a 

factor analysis (FA) was carried out to facilitate 
the reduction of data dimensionality and to 

explore the underlying relationship structure. This 

analysis adhered to the following model (Eqn. 2) 

𝐹 = 𝑍 (𝐴𝑇  𝑅−1)𝑇                                       (Eqn. 2) 

Where, F is a g × f matrix with the factorial score; 

Z is a g × p matrix with the rescaled means; A is a 

p × f matrix of canonical loading, and R is a p × p 
correlation matrix between the traits. Furthermore, 

g, f, and p indicates the number of genotypes, 

factor retained, and measured traits, respectively. 
In the third step, a [1 × p] vector was considered as 

the ideotype matrix. The MGIDI index was then 

calculated by calculating the Euclidean distance 
between the genotype scores and the ideal 

genotype values. The following equation (Eqn. 3) 

was used to achieve this calculation: 

  𝑀𝐺𝐼𝐷𝐼𝑖 = √∑ (𝐹𝑖𝑗 −  𝐹𝑗)2
𝑓

𝑗=1
                (Eqn. 3) 
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Where, MGIDIi is the multi-trait genotype-

ideotype distance index for the ith genotype; Fij is 

the score of the ith genotype in the jth factor (i = 

1, 2, ..., g; j = 1, 2, ..., f), being g and f the number 
of genotypes and factors, respectively, and Fj is 

the jth score of the ideotype. The genotype with 

the lowest MGIDI is then closer to the ideotype 
and therefore should presents desired values for all 

the analyzed traits. 

GRAPES, an R-based programme created by 

(Gopinath et al., 2020), was used for the ANOVA 
and genetic variability parameters analysis. The 

"metan" package inside the R programme, 

(Olivoto and Lúcio, 2020), was used for 
Correlation analysis and MGIDI calculations. 

Furthermore, Principal Component Analysis 

(PCA) was performed with a mix of tools and 
packages. GRAPES was used in conjunction with 

the programmes ggplot2 (Wickham, 2016), 

corrplot (Wei and Simko, 2021), and factoextra 

(Kassambara and Mundt, 2020). These packages, 
used together, aided in the implementation of the 

PCA. 

3. Results 

3.1 Per se performance of the genotypes 

Analysis of variance showed the presence of 

significant difference between all the traits 

indicating the presence of ample genetic variation 

for further exploitation (Supplementary Table 1).  

The per se performance (Table 2) for the observed 

traits in the experiment revealed the following 

trends. Plant height ranged between 108 to 182 cm 

with a mean of 142.46 cm. while days to 50% 

tasseling ranged between 50 to 65 days 

categorizing the germplasm into medium and late 

duration types, while the days to 50% silking 

ranged between 52 to 68 days. The cob length 

ranged between 10.0 to 18.0 cm with an average 

length of 14.7 cm, while the cob diameter ranged 

between 3.50 cm to 8.10 cm with an average 

diameter of 6.40 cm. kernel rows per cob ranged 

between 10 to 18 rows with a mean of 14 rows per 

cob, while the kernel number per row ranged 

between 12 to 37 kernels per row with an average 

of 28 kernels per row. The shelling percent ranged 

Table 1: List of 55 genotypes used under study 

Code Genotypes Code Genotypes 

G1 B. No 9119-1-1 G29 B. No 9233-1 

G2 UMI 1151-2 G30 UMI 1113 

G3 UMI 653-2-3 G31 B. No 1125-7 

G4 Hyd No 1075-4-1-1 G32 B. No 1258-7 

G5 UMI 819-3 G33 UMI 96 

G6 B. No 1265-6-2 G34 UMI 1051 

G7 UMI 1101 G35 Hyd No. 2009-2-2-15 

G8 B. No 1076-5-1 G36 B. No 1110-8 

G9 B. No 71810 G37 B. No 1076-5-4-1 

G10 UMI 1003-2-3 G38 Hyd No. 1082-2 

G11 UMI 178 G39 UMI 142 

G12 B. No 72183-9-2 G40 B. No 426-3 

G13 B. No 1043-7 G41 B. No 71806 

G14 B. No 1131-5 G42 Hyd No. 1075-4-2 

G15 B. No 1421-5-1 G43 B. No 1076-5-4-3 

G16 UMI 164 G44 UMI 346-1 

G17 B. No 1118-3 G45 9119-1-2-1 

G18 UMI 406 G46 UMI 504 

G19 UMI 697-2 G47 B. No 1253-8 

G20 UMI 1131-1 G48 UMI 920 

G21 B. No 1075-2 G49 UMI 1098-4 

G22 B. No 1917-2-1-1 G50 UMI 823 

G23 UMI 1105 G51 UMI 1223 

G24 B. No 1064-5 G52 UMI 1210 

G25 B. No 1266-7 G53 UMI 1205 

G26 UMI 1009-2-2 G54 UMI 1220 

G27 B. No 1048-7 G55 UMI 1201 

G28 B. No 1076-5-4-2   
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from 75.0 to 82.5% with an average of 79%. The 

grain yield ranged between 42.4 g to 77.5 g with a 

mean yield of 61.20 g.   

 3.2 Genetic variability 

The components of genetic variability such as 

phenotypic coefficient of variance (PCV), 

genotypic coefficient of variance (GCV), broad-

sense heritability are given in Table 2 and 

discussed below. 

3.3 Components of genetic variance 

The Phenotypic coefficient of variance is higher 

than the genotypic coefficient of variance 

indicating the presence of environmental effect in

Table 2: Best performing maize inbred lines for yield and yield attributing traits 

Sl. 

No 
Genotype 

Grain 

yield (g) 
PH DFT DFS CL CD NKR NKP SP 

1 UMI 1009-2-2 77.5 143.7 57 60 17.2 7.0 18 33 79.0 

2 UMI 1131-1 75.3 182.0 55 57 17.0 7.9 18 32 78.6 

3 B. No 1048-7 75.0 162.2 56 59 18.0 7.1 16 37 78.9 

4 B. No 1076-5-1 74.7 134.8 51 54 17.7 7.0 16 35 79.8 

5 UMI 96 74.5 168.7 54 57 17.4 6.6 16 37 82.0 

6 B. No 1110-8 74.5 108.0 53 55 16.5 7.0 16 32 80.2 

7 9119-1-2-1 74.3 126.1 57 59 17.6 6.5 18 32 80.7 

8 UMI 1201 74.1 162.4 53 56 17.0 6.2 16 37 79.4 

9 Hyd No. 2009-2-2-15 73.6 118.8 58 62 17.0 6.8 16 36 79.0 

10  UMI1210 73.0 158.0 52 55 16.0 7.0 16 35 79.2 

Minimum 42.4 108 50 52 10.1 3.45 10 12 75 

Maximum 77.5 182 65 68 18 8.05 18 37 82.5 

Mean 61.20 142.46 55 58 14.75 6.40 14 28 79.00 

PCV (%) 17.59 13.5 5.54 5.36 15.69 16.88 18.15 22.9 3.64 

GCV (%) 16.17 13.12 5.24 4.95 14.88 12.37 12.08 20.82 1.19 

h2
bs (%) 84.5 94.4 89.6 85.2 89.9 53.7 44.3 82.6 10.7 

GAM (%) 30.6 26.3 10.2 9.4 29.1 18.7 16.6 39 0.8 

PH = Plant height (cm), DFT = Days to 50% flowering, DFS = Days to 50% silking, CL = Cob length (cm),               

CD = Cob diameter (cm), NKR = Number of kernel rows, NK = Number of kernels per row, SP = Shelling 

percentage (%), GY = Grain yield (g) 
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the trait expression. Further, High values for both 

PCV and GCV were exhibited by kernel number 

per row. Kernel row number, grain yield, cob 

diameter, cob length and plant height exhibited 

moderate values for both PCV and GCV, while 

days to 50% tasseling, days to 50% silking and 

shelling percentage showed low PCV and GCV 

values. The magnitude of difference between the 

PCV and GCV estimates can be used to determine 

the amount of variance that occurs due to 

environment. 

3.4 Broad sense heritability (h
2

bs) and Genetic 

Advance as percent of Mean (GAM) 

Plant height, cob length, kernels per row and yield 

exhibited high heritability coupled with high 

genetic advance. Days to 50% tasseling, days to 

50% silking exhibited high heritability with 

moderate GAM. Cob diameter and kernel row 

number exhibited moderate values for both 

heritability and genetic advance. While, shelling 

percentage exhibited low heritability and genetic 

advance. 

3.5 Correlation 

Correlation analysis for the traits studied revealed 

various significant trait associations (Fig. 1). Days 

to 50% tasseling and days to 50% silking showed 

high positive significant correlation between each 

other. Yield is a trait which is influenced by 

multiple dependent factors, hence an analysis of 

the trait association with the grain yield reveals 

the traits to be improved to achieve higher yields. 

Grain yield significant positive association with 

plant height, cob length, cob diameter, number of 

kernel rows, number of kernels per row. Hence 

selection for these traits can be utilized to improve 

grain yield.  

3.6 Principal component analysis 

 

The principal component analysis method, 

established by Karl Pearson in 1901, is used to 

reduce the size of a data set into a number of 

components (Venujayakanth et al., 2017). The 

Principal Component Analysis (PCA) conducted 

in this study effectively partitioned the total 

variability into nine principal components, where 

three components displayed eigenvalues 

surpassing one, signifying their substantial 

contribution in explaining the dataset's variance as 

evidenced in the scree plot (Fig. 2). Collectively, 

these three principal components accounted for a 

noteworthy 74.44% of the overall variance. 

Notably, the first PC emerged as the most 

influential, explaining 37.37% of the total 

variance, followed by the second (22.89%) and the 

third (14.17%) PCs. The identified trait 

contributions delineated distinct patterns: the first 

PC was characterized by traits associated with 

grain yield, cob characteristics, except number of 

kernel rows, while the second PC predominantly 

encapsulated flowering traits. The third PC 

prominently featured shelling percentage and plant 

height, elucidating their influence on this 

component. The trait number of kernel rows was 

the major contributor for the variance explained 

by PC6 (Fig. 2). 

 

PCA biplot exhibits the relation between the traits 

and between the genotypes (Fig. 3). The acute 

angle between two traits reveals the positive 

association between them, while an angle >90° 

indicated negative association. The flowering 

traits are in high positive correlation with each 

other, while the yield and cob traits such as cob 

length, cob diameter, kernel row number, kernels 

per row showed positive associations amongst 

them. Based on their scatter position on the biplot,  
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the genotypes UMI 1003-2-3 (G10), B. NO 1421-

5-1 (G15), B. NO 1917-2-1-1 (G22), G3, B. NO 

1125-7 (G31), UMI 920 (G48) are placed the 

farthest in the biplot indicating the diverse nature 

of these genotypes. 

3.7 Multi trait Genotype Ideotype Index 

Initially two ideotypes were defined with varying 

maturity i.e. medium and late, maturing with high 

yield. The MGIDI distances to selected genotype 

were calculated with respect to each ideotype. A 

selection intensity of 15% is opted for the 

selection criteria (Fig. 4). 

3.8 Medium maturing ideotype 

The selection gains (Table 3) were positive for all 

the traits with kernels per row having the highest 

gain at 18.60% followed by grain yield 18.30%, 

cob length (14.80%). Shelling percentage has the 

least gains at 0.07%.  Cumulative selection gain 

was recorded at 70.21%. Eight genotypes were 

selected at 15% SI, which are B. NO 1265-6-2 

(G8), UMI 1210 (G52), UMI 96 (G33), UMI 1201 

(G55), UMI 1098-4 (G49), B. No 1110-8 (G36), 

B. NO 1064-5 (G24), UMI 1205 (G53). The 

genotype B. NO 1265-6-2 (G8) was the closest 

with least MGIDI value of 1.10 followed by UMI 

1210 (G52) (1.59), UMI 96 (G33) (1.69) (Table 

3). 

3.9 Late maturing ideotype 

All the traits showed positive selection gains 

(Table 3) ranging from 18.80% for Kernel number 

to 0.03% for shelling percentage, except for plant 

height which showed a negative selection gain (-

5.31). A cumulative selection gain was recorded at 

69.06% and a negative selection gain of -5.31%. 

Similarly, eight genotypes were selected based on 

SI of 15% UMI 1003-2-3 (G10) HYD NO. 2009-

2-2-15 (G35), UMI 1009-2-2 (G26), Hyd No. 

1075-4-2 (G42), B. NO 1048-7 (G27), B. NO 

1076-5-4-2 (G28), 9119-1-2-1 (G45), B.NO1076-

5-4-1 (G37) with UMI 1003-2-3 (G10) having the 

closest resemblance to the proposed ideotype 

based on its MGIDI values (0.71) (Table 3). 

Table 3: Factor analysis and Multi Trait Genotype Ideotype Distance Index for two ideotypes 

Trait Factor 
Eigen 

Value 
PVE CPVE 

SGperc Genotypes selected 

Medium Late Medium MGIDI Late MGIDI 

CL 

FA1 

 
3.36 37.37 37.37 

14.80 12.40 G8 1.10 G10 0.71 

CD 5.98 5.78 G52 1.59 G35 2.44 

KRN 7.40 5.99 G33 1.69 G26 2.50 

NKP 18.60 18.80 G55 1.73 G42 2.61 

GY 18.30 17.00 G49 1.98 G27 2.81 

DFT 
FA2 2.06 22.89 60.26 

1.47 4.47 G36 2.12 G28 3.00 

DFS 1.23 4.59 G24 2.12 G45 3.07 

PH 
FA3 1.28 14.17 74.44 

2.36 -5.31 G53 2.17 G37 3.21 

SP 0.07 0.03     

Cumulative selection gain   70.21 69.06     

Negative selection gain    -5.31     

PH = Plant height (cm), DFT = Days to 50% flowering, DFS = Days to 50% silking, CL = Cob length (cm), CD = 

Cob diameter (cm), NKR = Number of kernel rows, NK = Number of kernels per row, SP = Shelling percentage 

(%), GY = Grain yield (g); PVE = Percent variance explained; CPVE= Cumulative percent variance explained 
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3.10 Strength and Weakness view of selected 

genotypes 

The radar plot depicts the strength and weaknesses 

of the selected genotypes for various maturity 

periods are visualized (Fig. 5). Smaller 

proportions explained by a factor that is placed 

closer to the external edge indicate that the trait 

within that factor is more similar to the ideotype 

(Singamsetti et al., 2023). A view on strength and 

weakness under medium maturity showed that the 

genotypes B. NO 71806 (G41) and G56 showed 

strengths related to factor 1 which holds yield and 

yield attributing traits, whereas B. NO 1064-5 

(G24) and B. NO 1265-6-2 (G8) showed strengths 

for the factor 2 which holds flowering traits (DFT, 

DFS), and UMI 96 (G33), UMI 1098-4 (G49), B. 

NO 1265-6-2 (G8) showed strengths in factor 3 

which holds SP and PH. 

Similarly, for late maturity, the genotypes 9119-1-

2-1 (G45) and B. NO 1048-7 (G27) showed 

strength in FA1, while UMI 1003-2-3 (G10) 

showed strength in FA2 and B. NO 1076-5-4-1 

(G37), B. NO 1076-5-4-2 (G28), and UMI 1009-

2-2 (G26) showed strength in FA3. 

4. Discussion 

A successful maize breeding program relies on the 

amount of genetic variability present in the 

available germplasm. Wider presence of genetic 

variability aids in selection of desirable genotypes. 

The estimates of PCV and GCV explain the 

amount of variation present as expressed by either 

the genotype or the environment. In this study, 

high values for both PCV and GCV were 

exhibited by kernel number per row. Kernel row 

number, grain yield, cob diameter, cob length and 

plant height exhibited moderate values for both 

PCV and GCV. The magnitude of difference 

between the PCV and GCV estimates can be used 

to determine the amount of variance that occurs 

due to environment. Similar results were reported 

by other researchers (Netaji et al., 2000; 

Nagabhushan et al., 2011; Kapoor and Batra, 

2015; Kandel et al., 2018; Prakash et al., 2019). 

Estimates of genetic variability coupled with 

heritability and genetic advance estimates aid us in 

selection and improvement programs to obtain 

desirable genetic gains (Swarup and Chaugle, 

1962). The values of heritability and genetic 

advance as mean, together can be used to 

determine the mode of gene action that is 

underlying the expression of the particular trait. A 

high heritability and GAM value indicate additive 

gene action, while a high heritability and low 

GAM percent indicate non-additive gene action. 

Low heritability and high GAM values indicated 

additive gene action but the heritability value 

could be due to environmental influence. Low 

heritability and GAM values show non additive 

gene action and also the prevalence of 

environmental influence in the manifestation of 

the character under study.  In this study, traits like 

plant height, cob length, kernels per row and yield 

are influenced by additive gene action, so 

selection for improvement of these traits can be 

followed for achieving desired gains. Shelling 

percentage based on its heritability and GAM 

values, it can be deduced that the underlying gene 

action controlling its expression is of non-additive 

type. (Nagabhushan, 2011; Sofi et al., 2007; 

Panwar et al., 2013; Rahman et al., 2017) reported 

similar results for these traits.  

Traits that contribute to yield are termed as yield 

attributing traits and these are generally in positive 

association with the yield. Positive, significant and 

high associations can be observed between cob 

length, cob diameter, number of kernel rows, and  
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number of kernels per row with yield (Rafiq et al., 

2010; Munawar et al., 2013; Lakshmi et al., 2018; 

Rai et al., 2021). Hence, selection for 

improvement of these traits can be used to achieve 

yield improvement. 

The study utilized Principal Component Analysis 

(PCA) to decompose total variability into nine 

components, where three components, accounting 

for 74.44% of variance, exhibited eigenvalues >1. 

Trait contributions highlighted distinct patterns: 

PC1 correlated with grain yield, cob traits; PC2 

predominantly linked to flowering traits, while 

PC3 emphasized shelling percentage and plant 

height while the variation captured by PC6 was 

explained by number of kernel rows. The similar 

work has been done by (Okporie, 2008; Iqbal et 

al., 2015; Bhusal et al., 2016). Varimax rotation 

reinforced the 'number of kernel rows' association 

with PC1. High communality values (98% to 

53%) indicated substantial collective variance 

explanation for traits. The placement of the 

genotypes far from the origin revealed their 

diversity compared to other genotypes. The 

genotypes UMI 1003-2-3 (G10), B. NO 1421-5-1 

(G15), B. NO 1917-2-1-1 (G22), G3, B. NO 1125-

7 (G31), UMI 920 (G48) were placed in the either 

extremes of the biplot, hence explaining their 

diverse nature. The genotypes can be employed 

for their utilization in breeding programs. 

The identification of medium and late maturing 

genotypes is crucial for producing hybrids 

preferred in specific Indian regions, emphasizing 

the importance of selecting genotypes with 

targeted traits in breeding programs. The MGIDI 

index offers a clear and effective selection method 

with practical applications for long-term genetic 

improvement. Assessing strengths and weaknesses 

using this approach provides a valuable tool to 

pinpoint areas for trait enhancement, 

distinguishing it from other indices. For instance, 

genotype UMI 1003-2-3 (G10) excels in flowering 

traits aligning with the proposed late maturing 

ideotype, while B. NO 1265-6-2 (G8), despite 

underperforming in flowering traits, suggests 

potential for improving yield traits while 

maintaining medium maturity. This approach was 

utilized by (Klein et al., 2023; Shirzad et al., 

2022; Palaniyappan et al., 2023; Lima et al., 

2023) in different crops to select genotypes that 

closely resemble the ideotypes suited for their 

breeding objective. 

5. Conclusion 

The presence of genetic variability is a requisite 

for any successful breeding program. Successful 

exploitation of the available genetic variability 

depends on the efficiency of selection based on 

the breeding objectives. Genotypes UMI 1009-2-

2, UMI 1131-1, B. No 1048-7, B. No 1076-5-1, 

UMI 96, B. No 1110-8, 9119-1-2-1, Hyd No. 

2009-2-2-15, UMI 1210 showed higher yield 

amongst other genotypes. Assessment of the 

association of traits provides an understanding, on 

trait interrelationships which can aid in further 

improvement. Every breeding objective has an 

ideotype around which the objective is focused on. 

Selection for single traits may increase the gains 

of that particular trait, but in process there is a 

chance of overlooking complex interactions 

between the studied traits. MGIDI is a 

comprehensive approach which enables 

simultaneous selection of genotypes based on 

multiple traits. Cumulative positive selections 

gains obtained for medium maturing ideotype was 

70.21%, while it was 69.06% for late maturing 

ideotype with grain yield and number of kernels 

per row contributing the highest selection gains. 

Negative selection gains were observed in plant 



VINODHANA et al., Multivariate analysis and multi-trait index based selection of Maize      117 

 

CURR. INNOV. AGRI. SCI., 1(2), JULY 2024 

 

height for late maturing ideotype. At a selection 

intensity of 15%, 8 genotypes were selected which 

lie closer to the ideotype. Hence, utilization of a 

multi trait based selection index can enable 

effective selection of genotypes without any loss 

of variability. 
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